Full Waveform Inversion Using the Wasserstein Metric

Brittany Froese Hamfeldt¹ Björn Engquist² Yunan Yang³

Optimization and Maching Learning Seminar New Jersey Institute of Technology September 30, 2021

¹New Jersey Institute of Technology ²University of Texas at Austin ³Cornell University

1 Introduction

- 2 The Wasserstein Metric
 - Optimal Transport
 - Application to FWI

3 Optimisation

- Adjoint State Method
- Linearisation of Wasserstein Metric
- 4 Computational Results

1 Introduction

- 2 The Wasserstein Metric
 - Optimal Transport
 - Application to FWI

3 Optimisation

- Adjoint State Method
- Linearisation of Wasserstein Metric
- 4 Computational Results

Introduction

The Wasserstein Metric Optimisation Computational Results

Seismic Full Waveform Inversion

Forward Problem

Given velocity field v(x):

- Supply initial waved field $u_0(x, z)$ (eg Ricker wavelet)
- Wave equation $\Rightarrow u(x, z, t)$
- Obtain data g = u(x, 0, t) from surface measurement

Common Shot Gather

Inverse Problem

Common Shot Gather

Velocity profile v(x)

Estimate velocity field:

$$v^*(x) = \operatorname*{argmin}_v d(f(v),g)$$

2

- g is observed data
- f(v) is obtained from solving forward problem

Signal Skipping

Example:

$$d(f,g) = \|f-g\|_2^2$$

Wavelet Profile

FWI with L₂ Misfit

True Model

L^2 Inversion

Outline

1 Introduction

- 2 The Wasserstein Metric
 - Optimal Transport
 - Application to FWI

3 Optimisation

- Adjoint State Method
- Linearisation of Wasserstein Metric
- 4 Computational Results

Optimal Transport Application to FWI

Optimal Transportation

Optimal Transport Application to FWI

Quadratic Cost

Find a mass-preserving map $T: X \to Y$ to minimise

٠

$$\int_X |x-T(x)|^2 f(x) \, dx.$$

André-Marie Ampère

Defines Wasserstein metric

$$W_2(f,g) = \sqrt{\inf_{T \in \mathcal{M}} \int_X |x - T(x)|^2 f(x) \, dx}$$

where M is set of maps that rearrange *f* into *g*.

Optimal Transport Application to FWI

Optimal Map (1D)

- Use cumulative distributions $F(x) = \int_{-\infty}^{x} f(t) dt$
- Optimal map $T(x) = G^{-1}(F(x))$

Optimal Transport Application to FWI

Cyclical Monotonicity

For $c(x, y) = |x - y|^2$, the optimal map is *cyclically monotone*.

For any $m \in \mathbb{N}^+$, $x_i \in X$, $1 \le i \le m$, $x_0 \equiv x_m$,

$$\sum_{i=1}^m x_i \cdot T(x_i) \geq \sum_{i=1}^m x_i \cdot T(x_{i-1}).$$

 $T(x) = \nabla \phi(x)$ where ϕ is convex [Rockafellar, *Pac. J. Math.*, 1966] ₁₃

Optimal Transport Application to FWI

The Monge-Ampère Equation

- Conservation of mass $\Rightarrow g(T(x)) \det(\nabla T(x)) = f(x)$
- Quadratic cost \Rightarrow $T(x) = \nabla \phi(x)$

Obtain Monge-Ampère equation

$$egin{cases} \det(D^2\phi(x)) = f(x)/g(
abla \phi(x)) \ \phi \ ext{is convex} \end{cases}$$

Optimal Transport Application to FWI

Boundary Conditions

 Rectangle to rectangle conditions can be expressed as Neumann condition

$$abla \phi \cdot \mathbf{n} = \mathbf{x} \cdot \mathbf{n}, \quad \mathbf{x} \in \partial \mathbf{X}.$$

 Other convex geometries lead to a Hamilton-Jacobi boundary condition

$$H(\nabla \phi(\mathbf{x})) = \mathbf{0}, \quad \mathbf{x} \in \partial \mathbf{X}.$$

Optimal Transport Application to FWI

W₂ as Misfit

Propose:

$$d(f,g) = W_2(f/\langle f
angle,g)^2$$

Remark: some pre-processing needed to turn f, g into densities

Optimal Transport Application to FWI

Forms of Error

 $u(x, t; v) = u_0(t - x/v)$ solves 1D wave equation

$$\begin{cases} u_{tt} = v^2 u_{xx}, & x > 0, t > 0\\ u = u_t = 0, & x > 0, t = 0\\ u = u_0(t), & x = 0, t > 0 \end{cases}$$

Variations in v lead to

Translations

Dilations in x

Variations in v at discontinuities lead to

Local changes in amplitude of reflected signal

Optimal Transport Application to FWI

Translations

Let
$$f_s(x) = g(x - s\eta), \eta \in \mathbb{R}^n$$

Optimal map:

$$T_{s}(x) = x - s\eta = \nabla\left(\frac{|x|^{2}}{2} - s\eta \cdot x\right)$$

Wasserstein metric:

$$W_2^2(f_s,g) = \int |x - T_s(x)|^2 f_s(x) dx$$
$$= s^2 |\eta|^2 \int f_s(x) dx$$

Optimal Transport Application to FWI

Dilations

Let $f_{\Lambda}(x) = g(\Lambda^{-1}x)/\det(\Lambda)$,

$$\Lambda = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$$

Optimal map:

$$T_{s}(x) = \Lambda^{-1}x = \nabla\left(\frac{1}{2}x^{T}\Lambda^{-1}x\right)$$

Wasserstein metric:

$$W_2^2(f_{\Lambda},g) = \int |x - T_{\Lambda}(x)|^2 f_{\Lambda}(x) dx$$
$$= \int y^T (I - \Lambda)^2 y g(y) dy$$

Introduction The Wasserstein Metric Optimisation

Optimal Transport Application to FWI

Local Amplitude Change

Let
$$f_{\beta}(x) = egin{cases} eta g(x), & x \in E \ g(x) & x \notin E \end{cases}$$

 Reparameterise and normalise as

$$h_{lpha}(x) = egin{cases} (1+lpha)g(x), & x\in E\ (1-\gamma_{lpha})g(x), & x
otin E \end{cases}$$

Exploit convexity of W₂²

$$W_2^2(sh_{lpha_1}+(1-s)h_{lpha_2},g) \leq sW_2^2(h_{lpha_1},g)+(1-s)W_2^2(h_{lpha_2},g)$$

Obtain

$$W_2^2(\hat{f}_{seta_1+(1-s)eta_2},g) \leq sW_2^2(\hat{f}_{eta_1},g) + (1-s)W_2^2(\hat{f}_{eta_2},g)$$

Optimal Transport Application to FWI

Convexity

$$f(x; s) = g(x + s\eta), \quad \eta \in \mathbb{R}^n,$$
(1)

$$f(x; A) = g(Ax), \quad A^{T} = A, A > 0,$$
 (2)

$$f(x;\beta) = \begin{cases} \beta g(x), & x \in E \\ g(x), & x \in \mathbb{R}^n \backslash E. \end{cases}$$
(3)

Theorem (Enguist, F, and Yang, Comm. Math. Sci., 2016)

The squared Wasserstein metric $W_2^2(f(m), g)$ is convex with respect to the model parameters *m* corresponding to a shift *s* in (1), the eigenvalues of the dilation matrix *A* in (2), or the local rescaling parameter β in (3).

Optimal Transport Application to FWI

Noise

Optimal Transport Application to FWI

Noise (1D)

Theorem (Enguist, F, and Yang, Comm. Math. Sci., 2016)

Let g be a positive probability density function on [0, 1] and choose $0 < c < \min g$. Let $f_N(x) = g(x) + r^N(x)$, which contains piecewise constant additive noise r^N drawn from the uniform distribution U[-c, c]. Then $\mathbb{E}W_2^2(f_N/\langle f_N \rangle, g) = \mathcal{O}(\frac{1}{N})$.

Optimal Transport Application to FWI

Noise (2D)

- Compute optimal maps dimension by dimension
- Obtain non-optimal composition $T_{x_1} \circ T_{x_2}$

Adjoint State Method Linearisation of Wasserstein Metric

Outline

1 Introduction

- 2 The Wasserstein Metric
 - Optimal Transport
 - Application to FWI

3 Optimisation

- Adjoint State Method
- Linearisation of Wasserstein Metric
- 4 Computational Results

Adjoint State Method Linearisation of Wasserstein Metric

The Optimisation Problem

Goal:

$$v^* = \operatorname*{argmin}_v J(v)$$

where

$$J(v) \equiv W_2(f(v),g)^2$$

Challenge:

Need

$$\nabla J(v) = \nabla_f W_2^2(f(v), g) \nabla_v f(v)$$

for efficient optimisation.

■ J(v) depends on intermediate variables u, ϕ

Parameter space (v) may be high-dimensional.

Adjoint State Method Linearisation of Wasserstein Metric

Example: Least Squares

Eg: $\boldsymbol{g}, \phi, \boldsymbol{v} \in \mathbb{R}^{n}$, $\boldsymbol{A} \in \mathbb{R}^{n \times n}$

$$\begin{array}{ll} \text{Minimise} \quad J(v) \equiv \frac{1}{2} \|\phi - g\|_2^2 \\ \text{s. t.} \quad A\phi = v \end{array}$$

Introduce perturbations

$$\delta \mathbf{v} = |\delta \mathbf{v}| \mathbf{e}_j, \quad j = 1, \dots, n$$

Intermediate perturbation

$$\delta\phi = \mathbf{A}^{-1}\delta\mathbf{v}$$

• Obtain final perturbation δJ

Adjoint State Method Linearisation of Wasserstein Metric

Example: Least Squares

Compute perturbation:

$$J + \delta J = \frac{1}{2} \|\phi + \delta \phi - g\|^{2}$$

= $J + \langle \phi - g, \delta \phi \rangle + h.o.t.$
= $J + \langle \phi - g, A^{-1} \delta v \rangle + h.o.t$

Problem: Computing all A⁻¹δν requires n linear solves.
 Solution: Introduce adjoint state equation to obtain

$$\delta J = \langle (A^{-1})^* (\phi - g), \delta v \rangle$$

Adjoint State Method Linearisation of Wasserstein Metric

Example: Least Squares

Compute perturbation:

$$J + \delta J = \frac{1}{2} \|\phi + \delta \phi - g\|^2$$

= $J + \langle \phi - g, \delta \phi \rangle + h.o.t.$
= $J + \langle \phi - g, A^{-1} \delta v \rangle + h.o.t$

Problem: Computing all A⁻¹δν requires n linear solves.
 Solution: Introduce adjoint state equation to obtain

$$\delta J = \langle (A^{-1})^* (\phi - g), \delta v \rangle$$

Adjoint State Method Linearisation of Wasserstein Metric

Gradient Approximations

W_2^2 Linearise ∇W_2^2 Discretise $(\nabla W_2^2)^h$

$W_2^2 \xrightarrow{\text{Discretise}} W_2^{2,h} \xrightarrow{\text{Linearise}} \nabla(W_2^{2,h})$

Introduction The Wasserstein Metric Optimisation

Adjoint State Method Linearisation of Wasserstein Metric

Linearisation of W_2^2

Introduce functional

$$J(f) = \int_X f(x) \left| x - \nabla u_f \right|^2 \, dx.$$

Perturb *f*,

$$J + \delta J = \int_X (f + \delta f) |x - \nabla (u_f + \delta u)|^2 dx.$$

To first order,

$$\delta J = \int_X \left(|x - \nabla u_f|^2 \, \delta f - 2f(x - \nabla u_f) \cdot \nabla(\delta u) \right) \, dx.$$

Adjoint State Method Linearisation of Wasserstein Metric

Linearisation of Monge-Ampère

Let ∇(u_f + δu) be optimal map from f + δf to g.
Perturbed Monge-Ampère equation is

$$f + \delta f = g(\nabla(u_f + \delta u)) \det(D^2(u_f + \delta u)).$$

Linearise:

$$\mathcal{L}[\delta u] \equiv g(\nabla u_f) \operatorname{tr}((D^2 u_f)_{adj} D^2(\delta u)) + \operatorname{det}(D^2 u_f) \nabla g(\nabla u_f) \cdot \nabla(\delta u) = \delta f.$$

• A linear elliptic PDE for δu .

Adjoint State Method Linearisation of Wasserstein Metric

Boundary Conditions

Rectangle to rectangle case,

$$\nabla u_f \cdot n = x \cdot n, \quad \nabla (u_f + \delta u) \cdot n = x \cdot n, \quad x \in \partial X.$$

 Linearised problem requires homogeneous Neumann conditions

$$abla(\delta u) \cdot n = 0, \quad x \in \partial X.$$

Linearisation of W_2^2

The first variation is

$$\delta J = \int_X \left[|x - \nabla u_f|^2 - 2f(x - \nabla u_f) \cdot \nabla \mathcal{L}^{-1} \right] \delta f$$

=
$$\int_X \left[|x - \nabla u_f|^2 + 2(\mathcal{L}^{-1})^* (\nabla \cdot (f(x - \nabla u_f))) \right] \delta f$$

=
$$\langle |x - \nabla u_f|^2 + 2(\mathcal{L}^{-1})^* (\nabla \cdot (f(x - \nabla u_f))), \delta f \rangle$$

Requires solution of a single linear elliptic PDE!

1 Introduction

- 2 The Wasserstein Metric
 - Optimal Transport
 - Application to FWI

3 Optimisation

- Adjoint State Method
- Linearisation of Wasserstein Metric
- 4 Computational Results

6 Parameter Model

Marmousi Model

True Model

 L^2 Inversion

W_2 Inversion

BP Model

True Model

L² Inversion

W₂ Inversion

Thanks!